UNCLASSIFIED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY

operated by

BATTELLE

for the

UNITED STATES DEPARTMENT OF ENERGY

under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information,
P.O. Box 62, Oak Ridge, TN 37831-0062;
ph: (865) 576-8401
fax: (865) 576-5728
email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service,
U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161
ph: (800) 553-6847
fax: (703) 605-6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm

UNCLASSIFIED
Visual Sample Plan
Version 6.0 User’s Guide

B.D. Matzke J.E. Wilson
L.L. Nuffer S.T. Dowson
J.E. Hathaway N.L. Hassig
L.H. Sego C.J. Murray
B.A. Pulsipher B. Roberts
S. McKenna

June 2010

Prepared for the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory
Richland, Washington 99352

UNCLASSIFIED
Abstract

This user’s guide describes Visual Sample Plan (VSP) Version 6.0 and provides instructions for using the software. VSP selects the appropriate number and location of environmental samples to ensure that the results of statistical tests performed to provide input to risk decisions have the required confidence and performance. VSP Version 6.0 provides sample-size equations or algorithms needed by specific statistical tests appropriate for specific environmental sampling objectives. It also provides data quality assessment and statistical analysis functions to support evaluation of the data and determine whether the data support decisions regarding sites suspected of contamination. The easy-to-use program is highly visual and graphic. VSP runs on personal computers with Microsoft Windows operating systems (98, NT, 2000, Millennium Edition, CE, XP, Vista, and Windows 7). Designed primarily for project managers and users without expertise in statistics, VSP is applicable to two- and three-dimensional populations to be sampled (e.g., rooms and buildings, surface soil, a defined layer of subsurface soil, water bodies, and other similar applications) for studies of environmental quality. VSP is also applicable for designing sampling plans for assessing chem/rad/bio threat and hazard identification within rooms and buildings, and for designing geophysical surveys for unexploded ordnance (UXO) identification.
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS</td>
<td>Attribute Compliance Sampling</td>
</tr>
<tr>
<td>AL</td>
<td>Action Level or Action Limit</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>AWE</td>
<td>U.K. Atomic Weapons Establishment</td>
</tr>
<tr>
<td>CDC</td>
<td>U.S. Center for Disease Control</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence Interval</td>
</tr>
<tr>
<td>COG</td>
<td>Course-Over-Ground</td>
</tr>
<tr>
<td>CS</td>
<td>Collaborative Sampling</td>
</tr>
<tr>
<td>DCGLw</td>
<td>Derived Concentration Guideline Level for average concentrations over a wide area</td>
</tr>
<tr>
<td>DoD</td>
<td>U.S. Department of Defense</td>
</tr>
<tr>
<td>DOE</td>
<td>U.S. Department of Energy</td>
</tr>
<tr>
<td>DHS</td>
<td>U.S. Department of Homeland Security</td>
</tr>
<tr>
<td>DPGD</td>
<td>Decision Performance Goal Diagram</td>
</tr>
<tr>
<td>DQA</td>
<td>Data Quality Assessment</td>
</tr>
<tr>
<td>DQO</td>
<td>Data Quality Objectives</td>
</tr>
<tr>
<td>EPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>ESTCP</td>
<td>Environmental Security Technology Certification Program</td>
</tr>
<tr>
<td>GIGO</td>
<td>Garbage In, Garbage Out</td>
</tr>
<tr>
<td>MARSSIM</td>
<td>Multi-Agency Radiation Survey and Site Investigation Manual</td>
</tr>
<tr>
<td>MI</td>
<td>Multiple Increment</td>
</tr>
<tr>
<td>MK</td>
<td>Mann-Kendall</td>
</tr>
<tr>
<td>MQO</td>
<td>Measurement Quality Objectives</td>
</tr>
</tbody>
</table>
NIOSH National Institute for Occupational Safety and Health
OSL Optimum Segment Length
PI Prediction Interval
RCRA Resource Conservation & Recovery Act of 1976
RMSE Root Mean Square Error
RSS Ranked Set Sampling
RTF Rich Text Format
SE Standard Error
SERDP Strategic Environmental Research & Development Program
TOI Targets of Interest
UCL Upper Confidence Limit
UTL Upper Tolerance Limit
UTM Universal Transverse Mercator
UXO Unexploded ordnance
VSP Visual Sample Plan
WRS Wilcoxon Rank Sum
WSR Wilcoxon Signed Rank
Acknowledgments

We wish to thank the many sponsors from multiple US Government Agencies and the United Kingdom Atomic Weapons Establishment for their continued support of VSP developments. We thank George Detsis and Rich Bush, U.S. Department of Energy, Dino Mattorano, Doug Maddox, and John Warren, U.S. Environmental Protection Agency, Lance Brooks, Chris Russell, and Don Bansleben, U.S. Department of Homeland Security, Anne Andrews, Herb Nelson, and Jeff Marqsee, U.S. Department of Defense (SERDP/ESTCP), Karl Sieber and Stan Shulman, U.S. Center for Disease Control NIOSH, and Steve Wilcox, previously with the United Kingdom Atomic Weapons Establishment, for their past and continued support and guidance on the development of many modules in VSP. We also wish to thank Rebecca Blackmon, Bill Ingersoll, Fred McLean, Ed Hartzog, David Bottrell, and Larry Zaragoza for their past support. Special thanks are extended also to individuals in the Statistical Sciences and Sensor Analytics Group at Pacific Northwest National Laboratory: Kevin Anderson for statistical expertise; Ryan Orr for his efforts in quality assurance, and Doug Bodine for his assistance on projects. We also thank Nancy Valentine and Don Hadley for their excellent guidance on biological sampling and building modeling, and Connie Martin for her project financial accounting support. We also want to especially thank Steve Wilcox for the continued beta testing and recommended improvements, and Dick Gilbert for his past contributions to VSP. The authors are pleased to acknowledge the contribution from the developers of ProUCL on some of the statistical analysis algorithms.